Analysis of Azotobacter vinelandii strains containing defined deletions in the nifD and nifK genes.
نویسندگان
چکیده
Strains of Azotobacter vinelandii which contain defined deletions within the nifD and nifK genes which encode, respectively, the alpha and beta subunits of the MoFe protein of nitrogenase were analyzed. When synthesized without its partner, the beta subunit accumulated as a soluble beta 4 tetramer. In contrast, when the alpha subunit was present without its partner, it accumulated primarily as an insoluble aggregate. The solubility of this protein was increased by the presence of a form of the beta subunit which contained a large internal deletion, such that the alpha subunit could participate in the assembly of small amounts of an alpha 2 beta 2 holoprotein. When synthesized alone, the beta subunit was remarkably stable, even when the protein contained a large internal deletion. The alpha subunit, however, was much more rapidly degraded than the beta subunit, both when it was synthesized alone in its native background and when it was synthesized with its beta subunit partner in a foreign background. Antibodies raised against purified alpha 2 beta 2 MoFe protein recognized epitopes only on the nondenatured beta subunit and not on the nondenatured alpha subunit. Our findings that all epitopes for the alpha2beta2 tetramer appeared to be on the beta subunit, that the beta subunit assembled into beta4 tetramers, and that the alpha subunit alone was very insoluble, combined with the previous finding that the Fe protein binds to the beta subunit (A. H. Willing, M. M. Georgiadis, D. C. Rees, and J. B. Howard, J. Biol. Chem. 264:8499-8503, 1989) all suggest that the beta subunit has a more surface location than the alpha subunit in the alpha2beta2 tetramer.
منابع مشابه
Iron-molybdenum cofactor biosynthesis in Azotobacter vinelandii requires the iron protein of nitrogenase.
Nitrogenase is composed of two separately purified proteins called the Fe protein and the MoFe protein. In Azotobacter vinelandii the genes encoding these structural components are clustered and ordered: nifH (Fe protein)-nifD (MoFe protein alpha subunit)-nifK (MoFe protein beta subunit). The MoFe protein contains an ironmolybdenum cofactor (FeMo cofactor) whose biosynthesis involves the partic...
متن کاملVnfY is required for full activity of the vanadium-containing dinitrogenase in Azotobacter vinelandii.
A gene from Azotobacter vinelandii whose product exhibits primary sequence similarity to the NifY, NafY, NifX, and VnfX family of proteins, and which is required for effective V-dependent diazotrophic growth, was identified. Because this gene is located downstream from vnfK in an arrangement similar to the relative organization of the nifK and nifY genes, it was designated vnfY. A mutant strain...
متن کاملDirected transposon Tn5 mutagenesis and complementation analysis of Rhizobium meliloti symbiotic nitrogen fixation genes.
An 18 kb region adjacent to and surrounding the genes for nitrogenase (nif) was cloned from the genome of the symbiotic nitrogen-fixing species Rhizobium meliloti. A total of 31 Tn5 insertions in the nif region were constructed and assayed for their effect on symbiotic nitrogen fixation (Fix phenotype). Fix- insertions were found in two clusters, one 6.3 kb region not containing essential symbi...
متن کاملAssessing horizontal transfer of nifHDK genes in eubacteria: nucleotide sequence of nifK from Frankia strain HFPCcI3.
The structural genes for nitrogenase, nifK, nifD, and nifH, are crucial for nitrogen fixation. Previous phylogenetic analysis of the amino acid sequence of nifH suggested that this gene had been horizontally transferred from a proteobacterium to the gram-positive/cyanobacterial clade, although the confounding effects of paralogous comparisons made interpretation of the data difficult. An additi...
متن کاملGenetic analysis of Azotobacter vinelandii mutant strains unable to fix nitrogen.
Transformation was used to perform ratio test crosses with mutant strains of Azotobacter vinelandii unable to fix N2. Mutations that simultaneously eliminated both components of nitrogenase (nif-1 and nif-2) were tightly linked. The nif-45 mutation that resulted in the absence of an active molybdenum cofactor was closer to nif-1 and nif-2 than to any of the other nif mutations. Strains that lac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 172 10 شماره
صفحات -
تاریخ انتشار 1990